MATH 2B/5B Prep: Chain Rule

1. Find $\frac{\mathrm{d}}{\mathrm{d}x}\arctan(\sqrt{x})$.

Solution: We have a composition of outer function $f(x) = \arctan(x)$ and inner function $g(x) = \sqrt{x}$. These have derivatives

$$f'(x) = \frac{1}{1+x^2}$$
 $g'(x) = \frac{1}{2\sqrt{x}}$

Then by chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x}\arctan(\sqrt{x}) = \frac{\mathrm{d}}{\mathrm{d}x}f(g(x)) = f'(g(x))g'(x) = \frac{1}{1 + (\sqrt{x})^2} \frac{1}{2\sqrt{x}} = \frac{1}{1 + x} \frac{1}{2\sqrt{x}}$$

2. If $f(x) = \cos(e^{5x})$ then what is f'(x)?

Solution: f(x) is a composition of 3 functions, outer function $\cos(x)$, middle function e^x , and inner function 5x. Their derivatives are

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos(x) = -\sin(x)$$
 $\frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x$ $\frac{\mathrm{d}}{\mathrm{d}x}5x = 5$

Using chain rule twice we get

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos(e^{5x}) = -\sin(e^{5x})\frac{\mathrm{d}}{\mathrm{d}x}e^{5x} = -\sin(e^{5x})e^{5x}5 = -5\sin(e^{5x})e^{5x}$$

3. Compute the derivative of $\frac{1}{g(x)}$ in terms of g(x) and g'(x).

Solution: We consider 1/g(x) as the composition of outer function $f(x) = 1/x = x^{-1}$ with the inner function g(x). Recall that $f'(x) = -1/x^2$. Then chain rule says

$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{g(x)} = \frac{\mathrm{d}}{\mathrm{d}x} f(g(x)) = f'(g(x))g'(x) = -\frac{1}{g(x)^2} g'(x) = -\frac{g'(x)}{g(x)^2}$$